
OPTIMIZATION OF SELECTED REMOTE SENSING ALGORITHMS FOR EMBEDDED
NVIDIA KEPLER GPU ARCHITECTURE

Lubomír Říha*, Jacqueline Le Moigne**, Tarek El-Ghazawi***

* IT4Innovations National Supercomputing Center, VŠB-Technical University of Ostrava, Ostrava,

Czech Republic
** NASA Goddard Space Flight Center, Software Engineering Division, Greenbelt, MD, USA

*** High-Performance Computing Laboratory, The George Washington University, Ashburn, VA, USA

ABSTRACT

This paper evaluates the potential of embedded Graphic
Processing Units in the Nvidia’s Tegra K1 for onboard
processing. The performance is compared to a general
purpose multi-core CPU and full fledge GPU accelerator.
This study uses two algorithms: Wavelet Spectral Dimension
Reduction of Hyperspectral Imagery and Automated Cloud-
Cover Assessment (ACCA) Algorithm. Tegra K1 achieved
51% for ACCA algorithm and 20% for the dimension
reduction algorithm, as compared to the performance of the
high-end 8-core server Intel Xeon CPU with 13.5 times
higher power consumption.

Index Terms— remote sensing, GPU, Tegra K1, ACCA,
dimension reduction

1. INTRODUCTION

This paper evaluates the suitability of new embedded
Graphic Processing Units (GPU) in the Nvidia’s Tegra K1
(K1) System-on-Chip (SoC) with typical Typical Design
Power (TDP) under 7W [1] for onboard processing. The
performance of this SoC is compared to two modern High
Performance Computing (HPC) architectures: (1) a general
purpose multi-core CPU (8-core Sandy Bridge E5-2470,
2.3GHz, TDP 95W [2]) and (2) GPU accelerator (Nvidia

Tesla K20 (K20), TDP 225W [3]). For this study, we selected
two algorithms:

1. Wavelet Spectral Dimension Reduction of
Hyperspectral Imagery: The principle of this method is to
apply a discrete wavelet transform to hyperspectral data in the
spectral domain and at each pixel location. The optimal level
of wavelet decomposition is computed adaptively for each
pixel. See [4] for more details.

2. Automated Cloud-Cover Assessment (ACCA)
Algorithm: The ACCA algorithm determines and rates the
overall cloud cover of an image through 2 steps: Pass-One
isolates clouds from non clouds by utilizing eight threshold-
based filters, then Pass-Two resolves the detection
ambiguities from Pass-One by computing global statistics
over the image. See [5] for more details.

This paper shows that the performance achieved using this
new SoC designed for battery powered devices is comparable
to HPC hardware with significantly higher power
consumption.

2. HARDWARE ARCHITECTURES

The Intel Xeon Sandy Bridge CPU is a general purpose
processor designed to handle a wide variety of workloads. It
has a small number, up to 8, of high performance cores with
64 bit wide SIMD (Single Instruction Multiple Data) units
and large on-chip caches (~22 MB) designed to minimize the
effect of limited memory bandwidth (38.4 GB/s).

 Nvidia Tegra K1 (GPU part) 8-core Intel Sandy Bridge E5-2470 Nvidia Tesla K20 GPU
Architecture type embedded SoC with Kepler GPU general purpose CPU for HPC GPU accelerator for HPC
Frequency 0.852 GHz – GPU part 2.3GHz 0.706GHz
Number of Cores 192 SP scalar cores – GPU part 64 SP / 32 DP cores (8 SIMD cores) 2496 SP / 832 DP scalar cores
On-Chip Caches 64 KB L1 per 192 SP cores

128KB L2 per chip
32+32KB L1, 256 KB L2 per SIMD core
20 MB L3 per chip

64 KB L1 per 192 SP cores;
1536KB L2 per chip

SIMD width 32 for both SP and DP 8 for SP and 4 for DP 32 for both SP and DP
Peak Performance 327 SP / 13 DP GFLOPS 147 SP / 74 DP GFLOPS 3524SP/1160DP GFLOPS
Mem. Size; Bandwidth 2GB at Jetson TK1; 14.9 GBPS up to 384 GB; 38.4 GBPS 5GB; 208 GBPS
TDP 7W (SoC + DRSM only) 95W (CPU only) 225W (accelerator only)

Table 1. Main parameters of the selected hardware architectures

https://ntrs.nasa.gov/search.jsp?R=20180005471 2019-04-29T09:11:58+00:00Z

The performance is achieved by the SIMD units which can
process 4 Double Precision (DP) or 8 Single Precision (SP)
values per core per clock cycle, or 32 DP/64 SP operations
per clock per chip. For more details see Table 1.
Both K20 and the GPU part of K1 are based on the NVidia
Kepler architecture. Designed as throughput architecture, it
has small L1 and L2 caches but fast memory interface.
Processing cores are organized in Streaming Multiprocessors
(SMX). Each SMX has 6 groups of 32 SP cores (192 cores
total), that can be seen as 6 SIMD units. K20 has additional
64 DP cores, but not K1. The K20 contains 13 SMXs while
K1 only 1 SMX. In terms of peak performance in SP the K1
is 10.7 times slower than K20, but 2.2 times faster than the
CPU. In terms of memory bandwidth K1 is 13.9 times slower
than K20 and 2.5 times slower than the CPU. But K1 is a SoC
designed for mobile and embedded systems with low power
consumption. The entire Jetson TK1 development board [6]
consumes ~12.5W (SoC + DRAM ~7W) under full load.

3. IMPLEMENTATION AND OPTIMIZATION

The main focus of the optimization part is to explore
techniques that allow efficient utilization of the parallel
hardware. Even though the architectures are different, they all
use SIMD units. This means that data is processed as short
vectors where identical operations are executed on all
elements. The number of elements per vector, or SIMD
width, is 4 DP or 8 SP values for CPU and 32 SP/DP for
GPUs, see Table 1. The efficiency of vector processing is
significantly reduced by the branching in the code caused by
conditional statements.

Both algorithms have a very high degree of parallelism
defined by the number of pixels and can be efficiently
vectorized. In case of dimension reduction algorithm, the
vectorization is used across spectral bands within a pixel,
when computing wavelet coefficients, while pixels are
processed independently. There are no conditional
statements, no branching, within the vectorized section of the

code that can reduce vectorization efficiency. For each pixel,
the algorithm requires fast access to original data, reduced
data and reconstructed data as these are accessed multiple
times. Therefore it is very efficient to keep it inside the on-
chip caches. This can be achieved in case of the CPU, but
K20 and K1 do not have enough on-chip storage which
results in performance penalty. This algorithm was chosen to
evaluate the effect of K1’s small caches on the performance.

On the other hand, the ACCA algorithm contains a large
number of conditional statements (one for each threshold-
based filter), controlled by an input data. This results in a
significant processing time variation depending on cloud
coverage, see Figure 3 left. This is a problem for on-board
real-time processing systems. To minimize this effect and
also to maximize the performance of the SIMD units, two
new versions of the ACCA algorithm were developed: (1)
Vectorized without Branching (VNB) and (2) Vectorized
with Branching (VWB). The VWB algorithm can utilize
SIMD units but still exhibits processing time variation. In the
VNB algorithm all threshold-based filters are redesigned to
avoid branching by setting specific bits of a register. At the
end, the register contains the value describing whether the
pixel is a cloud or not. This means that all filters are executed
for every pixel (this is not the case of the original ACCA
algorithm), which creates more work. But since this workload
can be processed much more efficient by the SIMD units, the
VNB algorithm delivers faster processing. In the case of
Tegra K1, the processing time variation as a function of cloud
coverage is reduced from ~9% to 0.2%, and the processing
time itself is reduced by 8.3% when compared to the VWB
version.
The performance of the proposed algorithms also depends on
the length of the vector processed per SIMD unit. In case of
the CPU this parameter is called vector length. In CUDA
model for GPUs the same parameter is described by number
of threads per block. See Figure 1 and 2 for optimal
configuration for all three architectures. These figures also
show the variation for different vector lengths.

Fig. 1. Optimal vector length for the ACCA algorithm
running on CPU is 32.

Fig. 2. Optimal number of threads per block for ACCA on
Tesla K20 and Tegra K1 is 128.

0

0,002

0,004

0,006

0,008

8 16 32 64 128 256 512 1024 2048

Pr
oc
es
sin

g
tim

e
[s
]

Vector length [elements]

Vectorized w/o branching -‐ average value
Vectorized with branching -‐ average value
Vectorized w/o branching (min. and max. values)
Vectorized with branching (min. and max. values)

0

0,02

0,04

0,06

0,08

0,1

0

0,001

0,002

0,003

0,004

16 32 64 128 256 512 1024

Pr
oc
es
sin

g
tim

e
[s
]

Number of CUDA threads [-‐]

K20 -‐ Vectorized w/o branching -‐ average value
K20 -‐ Vectorized with branching -‐ average value
K20 -‐ Vectorized w/o branching (min. and max. values)
K20 -‐ Vectorized with branching (min. and max. values)
TK1 -‐ Vectorized w/o branching -‐ average value
TK1 -‐ Vectorized with branching -‐ average value
TK1 -‐ Vectorized w/o branching (min. and max. values)
TK1 -‐ Vectorized with branching (min. and max. values)

4. RESULTS

The proposed VNB version of the ACCA algorithm
brings three major improvements: (1) enables the execution
of the algorithm on the K20 and K1 GPUs; (2) significantly
improves the performance, see speedup up to 5.7 for CPU in
Figure 3, and (3) reduces the processing time variation for
different scenes, from 15.2% of the original algorithm to
1.0% for CPU (see Figure 4), 0.1% for K20 and 0.2% for K1
(see Figure 5). In all figures, the 6 different colors represent
datasets with cloud coverage varying between 1% and 66%.

The performance of the VNB version of the ACCA
algorithm for all three architectures and all datasets is shown
in Figure 6. The CPU is used as a baseline, with speedup

equal to 1, and K1 and K20 are compared to it. As expected,
the high performance K20 is on average 5.8 times faster, but
the K1, with 13 times lower power consumption achieved
51% performance of the high-end 8-core server CPU.

The wavelet spectral dimension reduction algorithm
performance on all three architectures is shown in Table 2. It
was tested in a data independent fashion, so that all pixels are
reduced by 4 wavelet decomposition levels. For each level
the reconstruction to the original size and evaluation using a
cross-correlation function is performed. Unlike ACCA this
algorithm efficiently utilizes large CPU caches while the
throughput GPU architecture is less efficient. This translates
into the performance of K1 being about 20% of the CPU.
Taking into account the 13 times lower power budget, the

Fig. 3. Speedup achieved by vectorization for CPU is between
4.7 and 5.8. The processing time variation of original
algorithm for different input data is 15.2%. The values above
the bars show the speedup for different scenes with various
cloud coverage from 1% to 66%.

Fig. 4. Processing time variation based on input data with
various cloud coverage 1%, 13%, 26%, 37%, 55% and 66%
for CPU. The values above the bars describe the difference in
processing time: negative values means slower than
vectorized w/o branching algorithm.

Fig. 5. Processing time variation based on input data with various cloud coverage 1%, 13%, 26%, 37%, 55% and 66% for
Tesla K20 and Tegra K1 GPUs. The values above the bars describe the difference in processing time: negative values mean
slower than vectorized no-branching algorithm. Image size is 2048x2048 pixels.

4.74
5.06

5.80

5.66
4.76

4.80

0

0,005

0,01

0,015

0,02

0,025

0,03

0,035

0,04

non-‐vectorized with
branching

vectorized w/o branching

Pr
oc
es
sin

g
tim

e
[s
]

1% 13% 26%
37% 55% 66%

time variation
15.2%

Speedup per scene:

Scenes with various
cloud coverage:

4%

6%
-‐3%

0%
7%

6%

0

0,002

0,004

0,006

0,008

0,01

vectorized w/o branching vectorized with branching

Pr
oc
es
sin

g
tim

e
[s
]

1% 13% 26%
37% 55% 66%

time variation
~ 2.1 %

time variation
~ 10.0 %

speedupin % over algorithm w/o branching
(-‐-‐) means sloverScenes with various

cloud coverage

3.3%
3.0%

-‐1.6%
-‐3.3%

6.6%
7.4%

0

0,0002

0,0004

0,0006

0,0008

0,001

vectorized w/o branching vectorized with branching

Pr
oc
es
sin

g
tim

e
[s
]

1% 13% 26% 37% 55% 66%

time variation: ~ 0.1% time variation: ~ 10%

Tesla K20m

Scenes with various cloud coverage:

speedupin % over algorithm w/o branching
(-‐-‐) means slover

-‐8.3%
-‐5.0%

-‐10.8%

-‐13.2%

-‐7.7%
-‐5.1%

0

0,002

0,004

0,006

0,008

0,01

0,012

vectorized w/o branching vectorized with branching

Pr
oc
es
sin

g
tim

e
[s
]

1% 13% 26% 37% 55% 66%

time variation: ~ 0.2% time variation: ~ 8.6%

Tegra K1

Scenes with various cloud coverage:

speedupin % over algorithm w/o branching
(-‐-‐) means slover

new Tegra K1 SoC has a great potential for onboard
processing of complex algorithms.

5. CONCLUSIONS

This paper evaluates the feasibility of a new mobile many-
core architecture, the 192-core GPU of the Tegra K1 SoC, for
onboard processing, using two remote sensing algorithms. In
order to gain optimal performance we had to redesign the
original algorithms to support SIMD processing. Tegra K1
achieved (1) 51% for ACCA algorithm and (2) 20% for the
dimension reduction algorithm, as compared to the
performance of the high-end 8-core server Intel Xeon CPU.
Both algorithms use only a GPU part of the SoC, leaving the
4+1 ARM Cortex A15 general-purpose cores available for
other tasks.

6. REFERENCES

[1] Nvidia, “NVIDIA Tegra K1: A New Era in Mobile Computing”,
http://www.nvidia.com/content/PDF/tegra_white_papers/Tegra-
K1-whitepaper-v1.0.pdf, 2014.

[2] Intel, “Intel® Xeon® Processor E5-2400 Product Family”,
http://www.intel.com/content/dam/www/public/us/en/documents/
datasheets/xeon-e5-2400-vol-1-datasheet.pdf, May 2012.

[3] Nvidia, “NVIDIA’s Next Generation CUDATM Compute
Architecture: Kepler TM GK110”, http://www.nvidia.com/
content/PDF/kepler/NVIDIA-kepler-GK110-Architecture-
Whitepaper.pdf, 2012.

[4] S. Kaewpijit, J. Le Moigne, T. El-Ghazawi, "Automatic
reduction of hyperspectral imagery using wavelet spectral analysis,"
Geoscience and Remote Sensing, IEEE Transactions on , vol.41,
no.4, pp.863,871, April 2003.

[5] R. R. Irish, et al. "Characterization of the Landsat-7 ETM+
automated cloud-cover assessment (ACCA) algorithm."
Photogrammetric Engineering & Remote Sensing 72.10 (2006):
1179-1188.

[6] Nvidia, “NVIDIA Jetson TK1 Development Kit”,
http://developer.download.nvidia.com/embedded/jetson/TK1/docs/
Jetson_platform_brief_May2014.pdf , 2014.

Fig. 6. Chip-to-chip performance comparison of the vectorized ACCA algorithm without branching for image size
2048x2048 pixels.

Architecture Spectral Bands
per pixel [-]

Processing time
[s]

Performance
[Mpix per second]

Speedup over CPU
[-]

8-core CPU
128 0.0303 3.14 1
256 0.0394 2.42 1
512 0.0627 1.52 1

Nvidia Tesla
K20

128 0.0118 8.08 2.57
256 0.0177 5.39 2.23
512 0.0411 2.32 1.53

Nvidia Tegra
K1

128 0.6133 0.61 0.20
256 0.4225 0.42 0.19
512 0.1793 0.18 0.17

Table 2. Chip-to-chip performance comparison of the Wavelet Spectral Dimension Reduction algorithm for image size

100,000 pixels.

